Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bacteria can swim upstream in a narrow tube and pose a clinical threat of urinary tract infection to patients implanted with catheters. Coatings and structured surfaces have been proposed to repel bacteria, but no such approach thoroughly addresses the contamination problem in catheters. Here, on the basis of the physical mechanism of upstream swimming, we propose a novel geometric design, optimized by an artificial intelligence model. UsingEscherichia coli, we demonstrate the anti-infection mechanism in microfluidic experiments and evaluate the effectiveness of the design in three-dimensionally printed prototype catheters under clinical flow rates. Our catheter design shows that one to two orders of magnitude improved suppression of bacterial contamination at the upstream end, potentially prolonging the in-dwelling time for catheter use and reducing the overall risk of catheter-associated urinary tract infection.more » « less
-
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation–dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.more » « less
-
A new continuum perspective for phoretic motion is developed that is applicable to particles of any shape in ‘microstructured’ fluids such as a suspension of solute or bath particles. Using the reciprocal theorem for Stokes flow it is shown that the local osmotic pressure of the solute adjacent to the phoretic particle generates a thrust force (via a ‘slip’ velocity) which is balanced by the hydrodynamic drag such that there is no net force on the body. For a suspension of passive Brownian bath particles this perspective recovers the classical result for the phoretic velocity owing to an imposed concentration gradient. In a bath of active particles that self-propel with characteristic speed $$U_0$$ for a time $$\tau _R$$ and then change direction randomly, taking a step of size $$\ell = U_0 \tau _R$$ , at high activity the phoretic velocity is $$\boldsymbol {U} \sim - U_0 \ell \boldsymbol {\nabla } \phi _b$$ , where $$\phi _b$$ is a measure of the ‘volume’ fraction of the active bath particles. The phoretic velocity is independent of the size of the phoretic particle and of the viscosity of the suspending fluid. Because active systems are inherently out of equilibrium, phoretic motion can occur even without an imposed concentration gradient. It is shown that at high activity when the run length varies spatially, net phoretic motion results in $$\boldsymbol {U} \sim - \phi _b U_0 \boldsymbol {\nabla } \ell$$ . These two behaviours are special cases of the more general result that phoretic motion arises from a gradient in the swim pressure of active matter. Finally, it is shown that a field that orients (but does not propel) the active particles results in a phoretic velocity $$\boldsymbol {U} \sim - \phi _b U_0 \ell \boldsymbol {\nabla }\varPsi$$ , where $$\varPsi$$ is the (non-dimensional) potential associated with the field.more » « less
An official website of the United States government
